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Abstract
The magnetic phase diagram of the antiferromagnetic compound TbGe3 (space
group Cmcm, TN = 40 K) has been studied by neutron diffraction and
magnetic measurements. It comprises three distinct ranges of magnetic ordering
characterized by two symmetry-independent wavevectors q1 = (q1x, 0, 0) and
q2 = (q2x, 0, q2z) in addition to the paramagnetic state: the high-temperature
(H T ) range TN down to Tic = 24 K where q1 and q2 are incommensurate
with the crystal lattice with variable length. In this range the magnetic structure
corresponds to a planar (0, y, z) modulated structure with variable amplitude
and direction. Below Tic = 24 K q1 and q2 lock in to the commensurate
values q1x = q2x = 1/2 and q2z = 1/3 corresponding to a sixfold cell
enlargement (2a, b, 3c) and a twofold splitting of the atomic positions. The
magnetic space group (Shubnikov) is Pbmma(Sh299

51 ). The two Tb sublattices
are coupled antiferromagnetically. Their different temperature dependence is
discussed in terms of a Fourier analysis of the observed data. The magnetic
structure corresponds to a uniaxial antiphase domain moment arrangement
(+−−) along c and (+−) along a. In the intermediate-temperature (I T ) range
Tic down to 16 K, μTb1/μTb2 increases continuously from 0.87 to 1. In this range,
the magnetic structure described by two amplitudes squares up to a constant-
moment phase with 8.1 μB/Tb atom which persists in the low-temperature (LT )
range 16–8 K.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In a previous investigation we reported on the crystal structure (Cmcm space group Z =
1, with 3Ge and 1Tb sites at 4c: (0, y, 1/4)) and on the magnetic ordering of the novel
antiferromagnetic compound TbGe3, (TN = 40 K) on the basis of powder neutron data [1].
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Due to the allocated page restrictions the paper refers to only the temperature region 8 K <

T < 23 K, where the magnetic structure is commensurate (C) with the crystal lattice and
associated with a sixfold cell enlargement (2a, b, 3c) and a twofold splitting of the atomic
positions [2]. Because all observed magnetic reflections (hkl) have h = 2n + 1 the C-centring
operation is lost and the magnetic lattice becomes anti-centred along the a direction, Pa [3]. It
is worth noting that the space group of the 3c enlarged cell Cmcm is a maximal isomorphic
subgroup of lowest index (order 3) of Cmcm.

In the enlarged cell the magnetic atoms occupy the sites Tb1 8 f :(0, y, z) with z = 1/12
in the ideal case and Tb2 4c: (0, y, 1/4). The almost collinear magnetic moment arrangement
is described by the non-standard setting magnetic space group Pamcm that was used in our
calculations. It corresponds to the Shubnikov magnetic space group Pbmma(Sh299

51 ) [3]. The
atoms of the 4c site at the mz mirror plane may have moments only along the c-direction while
those of the 8 f sites may have three components [1].

Alternatively, a superstructure can be described by Fourier expansion as a modulated
magnetic structure of the basis cell P and for all observed branches of the wavevector(s)
star participating in the transition. Symmetry analysis in terms of irreducible representations
(Irreps) provides a useful tool in the reduction of the parameter space, provided no symmetry
lowering has been observed. In our case the problem reduces to the description of the
magnetic ordering of two Tb atoms at site 4c m2m:Tb1: (0, y, 1/4), Tb2: (0,−y,−1/4)

and the wavevectors q1 = (q1x, 0, 0) and q2 = (q2x, 0, q2z). The atoms 3 and 4 of the
conventional Cmcm unit cell are obtained from (1) and (2) by adding the centring translation
tC = [1/2, 1/2, 0]. This description is more general and is of importance in our case because
the magnetic system in the H T range becomes incommensurate (IC) with the crystal lattice
where the Shubnikov description does not apply.

The present paper serves a multiple purpose. (i) It increases the experimental information,
by a new data set collected below and above TN, with higher flux, high instrumental resolution
(HR) and larger wavelength. We use this information to describe the model-independent
behaviour of our system. We also present the magnetic measurements. (ii) We revise the
previously published neutron diffraction results concerning the lock-in ordering (8–23 K) and
extend our analysis to the H T range, from 24 K up to TN. Our refinements are based on a
magnetic structure model developed by symmetry analysis in terms of Irreps. (iii) We show
the equivalence of the models obtained by the C and IC descriptions in detail at 8 K and
comment on the various symmetry descriptions of such systems. Parts of point (ii) are given
in the appendix while the phase problem in multiple q-vector structures is discussed in its full
generality by one of us (JRC) in a separate communication.

2. Experimental details

Magnetic measurements on TbGe3 were made on a SQUID magnetometer in the temperature
range 4.2–350 K. Results obtained are shown in figure 1. It is seen that Curie–Weiss behaviour
of the reciprocal susceptibility (χ−1) is observed down to about 100 K. From the slope of
the reciprocal susceptibility curve above 100 K an effective moment of 10.4 μB/Tb atom was
derived, which has to be compared to the value g[J (J + 1)]1/2μB = 9.72 μB expected for
trivalent Tb ions. The Curie–Weiss intercept equals θp = −32 K. The temperature dependence
of the magnetization (σ ) shows a cusp at TN = 40 K, indicating antiferromagnetic ordering
below this temperature.

Two sets of neutron diffraction data were collected and analysed by the FullProf Suite of
programs [4]. The structure plots are made by the program FullProf Studio [5]4 incorporated

4 FullProf Studio is a program of the FullProf Suite that is freely available in the site given in [4].
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Figure 1. Temperature dependence of the magnetization σ (left scale) and temperature dependence
of the reciprocal susceptibility (χ−1, right scale) of TbGe3. The data were obtained in a field of
1600 kA m−1.

in [4]. One data set is an extension of the data of [1], collected with the DMC multicounter
system at the reactor Saphir, Würenlingen (λ = 1.7008 Å, 2θ : 0–135◦ and step increment of
0.10◦). This set regards the H T range and will be used in the refinements of the magnetic and
crystal structures. The other data set was collected with the high-flux G6.1 multicounter system
at the reactor Orphée (LLB, Saclay) with a larger wavelength (λ = 4.741 Å, 2θ : 10–90◦ and
step increment of 0.20◦) providing a high resolution at low Q in order to check for the presence
of higher harmonics.

3. Results

3.1. High-resolution at low-Q neutron data (λ = 4.741 Å)

3.1.1. The magnetic satellites. Figure 2 displays some characteristic neutron patterns
collected at various temperatures in the lock-in and the IC regions with λ = 4.741 Å. The
few observed weak nuclear reflections, (0, 2, 0, 0, 4, 0, 1, 1, 0 and 0, 2, 1) display no changes
of their intensities or 2θ positions. In contrast, the two sets of magnetic satellites (h, k, l) ± qi

pertaining to the wavevectors q1 = (q1x, 0, 0) and q2 = (q2x, 0, q2z) display important changes
of their intensities and 2θ peak positions above the lock-in temperature Tic = 24 K. As reported
in [1], below Tic the wavevectors lock in to the values q1x = q2x = 1/2 and q2z = 1/3.
Furthermore, the neutron data comprise two unidentified reflections denoted by (i1 and i2)
in figure 2 at 2θ = 17.673◦ and 76.716◦ respectively. Both peaks appear below 43 K (see
section 3.1.3) and display no significant position changes with temperature.

The (0, k, 0) ± qi satellites are seen to move towards smaller 2θ angles with increasing
temperature above Tic = 24 K, while the {1, 1, 0}-qi satellites move to higher angles, indicating
that the components of both wavevectors decrease with increasing temperature. This behaviour
is more closely followed in figures 3(a) and (b). The position shift of both sets of satellites starts
at about Tic = 24 K, and marks the onset of the incommensurate region above this temperature.

Figure 3(c) shows that the q1x and q2x wavevector components derived from a complete
data analysis using the profile matching tool of the program [4] have a very different
temperature variation. The steepest decrease is just above the lock-in transition Tic = 24 K.

3
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Figure 2. High-resolution neutron data (G6.1 instrument, λ = 4.741 Å) for various temperatures
above and below the transition temperature to an incommensurate phase Tic = 24 K.

The q1x and q2z components vary very slowly in the narrow range 24–26 K and level off very
soon at 26.4 K within error to the commensurate values: q1x = 0.4928 (7) ≈ 31/63 and
q2z = 0.3258(6) ≈ 13/40. In contrast, the component q2x experiences relatively larger changes
with increasing temperature. At 29 K it has the value q2x = 0.4838(1) ≈ 0.48 = 12/25, and
it slows down (slope change) at higher temperatures. The trajectory of the wavevector q2 in
reciprocal space as a function of temperature does not deviate from a linear behaviour in the
range 8–27 K (figure 3(d)).

3.1.2. Intensity versus T of the q1 and q2 magnetic satellites. The data displayed in
figures 4(a) and (b) show that the q1 and q2 magnetic intensities exhibit quite different thermal
variation. The strongest and only resolved q1 magnetic satellites ((0, 0, 0)± and {1, 1, 0}−) are
concentrated around 2θ ≈ 34◦. The integrated neutron intensity of the zero-point magnetic
satellite (0, 0, 0) ± q1, see figure 4(a), drops quickly to zero above Tic, while the (0, 0, 0) ± q2

satellite has zero intensity.
The intensity of the (0, 0, 0)± qi satellites, in the particular case of TbGe3, is independent

of the atomic coordinates and gives first information about the relative phases and orientation
of the magnetic moments (Fourier coefficients) of all atoms in the cell when we consider
collinear structures. In our case we can, for instance, conclude from the behaviour of the
(0, 0, 0) ± q1 satellite that the Tb1 (0y1/4) and Tb2 (0−y3/4) magnetic moments have
opposite signs with at least one component along b and/or c in the commensurate range.
Then the structure factor for the reflection (1, 0, 0) in the (2a, b, 3c) cell (table 2) is
4 fmTb3+(m

(Tb1)

1 +m
(Tb1)
2 +m

(Tb1)

3 +m
(Tb1)

4 +m
(Tb2)

1 +m
(Tb2)

2 ), which would be non-zero only
for ferromagnetic modes and would decrease strongly only if m(Tb1) and m(Tb2) have opposite
signs and m(Tb1) becomes smaller than μTb2. Similar arguments apply to the (0, 0, 0) ± q2

satellite with zero intensity from the structure factor of the (1, 0, 1) reflection: in this case both
sites have zero contribution for ferromagnetic modes.
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Figure 3. Thermal variation of the 2θ angles of several magnetic satellites associated with the
wavevectors: (a) q1 = (q1x , 0, 0), (b) q2 = (q2x , 0, q2z) of TbGe3. Also shown is the thermal
variation of wavevector components: (c) and (d).

The {1, 1, 0}-q1 satellite changes smoothly with increasing temperature in the lock-in
range, displays a slope change at Tic, and is detectable up to TN (figure 4(a)). The peak shape of
this reflection shows a pronounced asymmetry towards low angles down to 8 K. We tentatively
deconvoluted the {1, 1, 0}-q1 peak assuming two peaks with the same half-width in figure 4(a).
The behaviour of the weak peak, denoted by Int (?) resembles that of the zero-point satellite.
This suggests the presence of a coexisting phase. Higher harmonics like 3qi , 5qi expected
to occur in modulated structures can be ruled out because of the different 2θ position. The
eventual presence of a further wavevector, i.e. (0, 0, 1/3), or short-range order effects, needs
to be detected by single-crystal data not presently available as it cannot be confirmed from a
single observation in the powder patterns.

The temperature variation of the q2 intensities (figure 4(b)) shows that all satellites appear
below 42 ± 1 K, in agreement with the magnetic measurements, and that they display a small
discontinuity and slope change at Tic.

3.1.3. Thermal behaviour of two unidentified reflections. Figure 4(c) shows that the two
unidentified weak peaks (i1 and i2, see section 3.1.1) appear abruptly below 43 K like a first-
order transition. Given the fact that their 2θ positions do not vary with temperature they

5



J. Phys.: Condens. Matter 19 (2007) 236201 P Schobinger-Papamantellos et al

T [K]

T [K] T [K]

Figure 4. Thermal variation of the integrated magnetic intensities of various magnetic satellites
pertaining to the wavevectors: (a) q1 = (q1x , 0, 0), (b) q2 = (q2x , 0, q2z) of TbGe3. Also shown is
the different behaviour of the integrated intensities of two unidentified weak reflections appearing
below TN.

cannot be considered as higher harmonics of the incommensurate magnetic phase. If they
are of magnetic origin they should pertain to a third wavevector of TbGe3 which does not
show temperature dependence. Contributions from the known neighbour phases TbGe2 (TN =
41 K) [6] and Tb3Ge5 (TN = 17 K) [7] can be ruled out: the former because of the peak
position, and the latter because of the ordering temperature. Therefore they most likely
arise from the ordering of a small amount of a novel coexisting Tb–Ge phase with similar
ordering temperature. Venturini [8] reports the existence of two new ErGe3−x compounds
of composition Er2Ge5 and ErGe1.16. We suggest that isomorphic compounds could also be
present in the Tb–Ge system, and these will be investigated in the future.

3.2. The magnetic phase diagram

The above experimental observations are model independent (profile matching) and are
summarized in a magnetic phase diagram in figure 5(a) that will be followed to trace our
data analysis in the next sections. The magnetic order is fully described by the symmetry-
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Figure 5. The magnetic phase diagram of TbGe3: from the G6 data (profile matching) (a), from the
refinements of the DMC data in terms of Fourier analysis (b) the Tb magnetic moments µ1 and µ2
(µ1 = m1 = m2 and µ2 = m0 cf equation (1)) versus T , and (c) the Fourier components S1(q2)

(amplitude of Tb atom 1′′ in figure 8(a)) and of the ratio |S1(q1)|/|S1(q2)| versus T .

independent wavevectors q1 and q2. This set of vectors describes several observed magnetic
peaks at any temperature of TbGe3. No higher harmonics are observed, nor any symmetry
lowering. The phase diagram comprises three distinct ranges of magnetic order. The first is the
paramagnetic range for T > TN. The second is the H T range, from TN down to Tic, where both
vectors (i) are incommensurate (IC) with the crystal lattice q1 = (q1x, 0, 0), q2 = (q2x, 0, q2y)

with q1x �= q2x and (ii) display different thermal behaviour. Finally, there is the lock-in range
(C)Tic down to 8 K, where the vectors lock in to the values q1 = (1/2, 0, 0) q2 = (1/2, 0, 1/3).
Further details concerning the nature of the squaring up of the modulated lock-in structure are
obtained from the data analysis that follows in section 5.3 (see figures 5(b) and (c)).

4. Refinements of crystal and magnetic structures

The magnetic refinements were carried out for a full data set (DMC instrument); however, we
present only four characteristic refinements representative of the three stability ranges of the
magnetic phase diagram given in figure 5(a). The most important parameters with regard to
the magnetic ordering obtained from the other data are summarized in figures 5(b) and (c) and
will be discussed in detail. For the C-range we present the results of two refinements: one at
8 K, the lowest measured temperature, and the second at 23 K, the upper stability border of
the commensurate phase. Figure 6 shows the 8 K refinement together with that at 60 K in the
paramagnetic state. The 23 K refinement is compared with that at 25 K just above the C → IC

7
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Figure 6. A part of the observed and calculated neutron diffraction patterns of TbGe3: (a) in the
paramagnetic state at 60 K, and (b) in the lock-in magnetically ordered state (LT ) at 8 K with
q1 = (1/2, 0, 0) and q2 = (1/2, 0, 1/3) referring to the C-cell.

transition in figure 7. The three unexplained weak observations (peak overlapping with satellite
{1, 1, 0}-q1 and the i1, i2 impurity lines) are excluded throughout our refinements as they would
not strongly affect the results.

The strongest magnetic reflections are concentrated in the low-angle part at all
temperatures. The main changes with increasing temperature are not in the peak topology,
which does not change drastically, but rather in the decrease of relative intensities. The largest
changes between the C and IC structures are marked by arrows in figure 7(b) for two data sets
at either side of the Tic transition. The refinements at any temperature are based on the magnetic
model described in section 5. Table 1 summarizes the refined structural parameters obtained at
various temperatures.

4.1. The revised commensurate 8 K refinement

Table 2 refers to the revised 8 K refinement in the C approximation with the Shubnikov
model [1]. In this refinement the background was refined and the scale factor was fixed to
the value of the 60 K structural refinement due to strong correlations with the moment values.
The present results lead to a uniaxial model with all moments confined to the shortest crystal

8
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Figure 7. A part of the observed and calculated neutron diffraction patterns of TbGe3: (a) in the
lock-in magnetically ordered state (LT ) at 23 K state, and (b) in the (H T ) incommensurate state at
25 K.

Table 1. Refined structural parameters of TbGe3 from neutron diffraction data: (i) in the
paramagnetic state at 60 K, and (ii) the magnetically ordered state (8 K, 23 K and 25 K). Space
group Cmcm (No. 63); all atoms at 4c: (0, y, 1/4).

Atom 60 K 8 K 23 K 25 K
x y y y y

Tb 0.0 0.4164(2) 0.4167(2) 0.4170(3) 0.4167(2)
Ge(1) 0.0 0.0392(2) 0.0382(2) 0.0392(3) 0.0394(2)
Ge(2) 0.5 0.1921(2) 0.1917(2) 0.1911(3) 0.1918(2)
Ge(3) 0.5 0.3096(2) 0.3095(2) 0.3093(9) 0.3095(3)

B (Å)2 0.53(7) 0.61(4) 0.61(9) 0.54(14)
a (Å) 4.0473(1) 4.0470(2) 4.0456(3) 4.0446(3)
b (Å) 20.7965(8) 20.804(1) 20.793(2) 20.786(1)
c (Å) 3.9162(1) 3.9148(2) 3.9332(3) 3.9126(3)
RB, Rwp, Rexp%, χ2: 6, 13, 7, 3.7 6, 13.7, 5, 8 5, 15, 5, 9 4.3, 11.6, 4, 8

axis c. The small moment deviation of 6.8◦ from the c-axis towards b of atoms at the 8 f site
reported in [1] could not be confirmed. The magnetic moment values 8.15(7) μB for Tb1 and

9
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Table 2. Coordinates and magnetic modes of the 4c and 8 f Tb sites in the magnetic space group
Pamcm or Pbmma (Sh299

51 ) [3]. Atoms shifted by (1/2, 0, 0) have opposite signs. Also given are the
8 K refined moment values shown in figure 8(b). The atom labels refer to figure 8(a) (IC model).
(Note: The magnetic reliability factor of this refinement is Rm = 8.7%.)

4c site

x y z Fz Atom number μz[μB]
0 y 1/4 + 2 −8.15(7)

0 −y 3/4 + 1′′ −8.15(7)

8 f site

x y z Ax Ay Fz Atom number μz[μB]
0 y z + + + 1 8.30(5)
0 −y 1/2 + z − − + 2′ 8.30(5)
0 y 1/2 − z − − + 1′ 8.30(5)
0 −y −z + + + 2′′ 8.30(5)

8.30(5) μB for Tb2 are within error mutually equal and inferior to those in [1], and they are
lower than the Tb3+ free-ion value g JμB = 9 μB, most likely because of crystalline field
effects. The reliability factors RB, Rm, Rwp, Rexp and χ2: 5.8%, 8.8%, 14%, 5%, 8 are lower
than in [1] and comparable with the results for the IC approximation given in the last column
of table 3 at 8 K. In table 3 we summarize the refined magnetic parameters for the C range (8 K,
23 K) and the H T range (25 K) in the IC approximation using the model developed below.
The refined commensurate magnetic structure at 8 K is shown in figure 8(b). It corresponds to a
uniaxial antiphase domain moment arrangement with one amplitude with the moment sequence
(+−−) along c and (+−) along a. The atoms related by the tC = [1/2, 1/2, 0] translation have
their moments in opposite directions. This together with the anti-translation (1/2, 0, 0) results
in the arrangement (+−− + +−− . . .) along the [1, 1, 0] diagonal.

4.2. Symmetry in incommensurate systems

Symmetry considerations provide parameter constraints and are a valuable help in the
refinements of complex incommensurate magnetic structures such as the magnetic ordering
of TbGe3 with the vectors q1 = (q1x, 0, 0) and q2 = (q2x, 0, q2y). Such structures may be
described in various equivalent ways, i.e. analysis in terms of irreducible representations, by
magnetic superspace groups, or by generalized Shubnikov groups.

Our analysis given in the appendix is based on the first way. The results summarized in
tables 4 and 5 for the q1 and q2 vectors respectively provide the basis functions and signs of
the Fourier components of the magnetic atoms at 4c Tb1: (0, y, 1/4) and Tb2: (0,−y,−1/4)

atoms in our calculations. For the wavevector q1, i.e. symmetry analysis results to either
uniaxial moment arrangements Fz(++) or Az(+−) along c or planar Fx Ay, Ax Fy . For the
q2 wavevector the situation is more complex; see the next section and the appendix.

5. Equivalence of the models refined in the C and IC approximations at 8 K

5.1. The IC approximation

The IC refinements use the basis functions of the Irreps for the 4c site given in tables 4 and 5
for the wavevectors q1 = (q1x, 0, 0) and q2 = (q2x, 0, q2z) respectively. In the lock-in state

10
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Figure 8. The uniaxial lock-in LT magnetic structure from refinements in the IC (a) and C
(b) approximation of TbGe3 at 8 K. In the latter only the Tb atoms are shown.

range the best fit was obtained for uniaxial structures with the moments confined to the c-axis
for both vectors. Both magnetic moment arrangements are described by a single representation.
For q1 we find Γ4 with the Tb1 and Tb2 moments parallel (Fz(++) mode). For q2 we found
Γ1 with the Az(+−) mode. Az means here S1z–bS2z. According to equation (4) for this
arrangement the Tb moments are also parallel (Fz mode). Because of the special wavevector
value q2z = 1/3 the Tb2 Fourier coefficient is multiplied by the phase factor b = e−3π iqz = −1,
resulting in a phase inversion.

Both q1, q2 magnetic structures result in sinusoidal modulated structures. At 8 K the
refined Fourier coefficients are 3.92 μB for q1 and 10.8 μB for q2 (table 3). The real structure
for each independent system may be derived by Fourier expansion from the refined Fourier
coefficients Sν(q j) of the magnetic moments in the basic unit cell (table 3) using expression (1).

The Fourier expansion of any periodic magnetic moment arrangement with the moments
at positions Rnν = rν + Rn, where Rn = n1a + n2b + n3c is a lattice translation vector
with n3 always integer and (n1, n2) integer or simultaneously half integers (because the lattice
is C-centred), and rν is the vector position of the atom ν in a primitive unit cell (in our case
ν = 1, 2), can be expressed by the formula

11
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Table 3. Refined magnetic moment amplitudes (Fourier coefficients for q1 and q2) phases ϕ and
total phases 	T for Tb1 at (0, y, 1/4) and Tb2 at (0,−y, 3/4) in the LT (8 K and 23 K) and H T
(25 K) neutron data of TbGe3. Tb3 and Tb4 atoms shifted by (1/2, 1/2, 0) have the same moment
values but opposite signs at LT . Rm% is the agreement factor for the magnetic refinements. (Note:
ϕ is the phase between Fourier components of magnetic moments of the same representation in the
commensurate refinement fixed by symmetry. 	T = ϕ(qi ) + 
G · 
G are global phases (origin
shift) of a given arrangement, obtained by optimization.)

Atom
Rm

%
ϕ(q1)/
ϕ(q2)

Sy(q j )

[μB]
Sz(q j )

[μB]
|S(q j )|
[μB] 	T

μy

[μB]
μz

[μB]

Atom
number
figure 8(a)

μT

[μB]
8 (K) 8.7
Tb1(q1) 0 3.92(6) 3.92(6) π/4 2.77(4) 1, 1′ 8.17(5)
Tb1(q2) 0 10.8(1) 10.8(1) −π/3 5.4(5) 1′′ −8.03(5)

Tb2(q1) 0 3.92(6) 3.92(6) π/4 2.77(4) 2 −8.03(5)

Tb2(q2) 4π/3 10.8(1) 10.8(1) π −10.8(1) 2′, 2′′ 8.17(5)
23 K 8.8
Tb1(q1) 0 2.7(1) 2.7(1) π/4 1.9(1) 1, 1′ 6.7(1)
Tb1(q2) 0 9.6(1) 9.6(1) −π/3 4.8(1) 1′′ −7.7(1)

Tb2(q1) 0 2.7(1) 2.7(1) π/4 1.9(1) 2 −7.7(1)

Tb2(q2) 4π/3 9.6(1) 9.6(1) π −9.6(1) 2′, 2′′ 6.7(1)
25 (K) 11.6 Figure 9

Tb1(q1) 0 2.0(1) 2.0(1) π/4 1.4(1) 1 5.9(1)
Tb1(q2) 0 3.1(3) −8.6(1) 9.14(7) π/3 1.5(1) −4.3(1) 1′ 8.51

1′′ 4.47
Tb2(q1) 0 1.5(3) 2.0(1) π/4 0.90 −1.06 2 5.7
Tb2(q2) 4π/3 3.1(3) 8.6(1) 9.14(7) 2π/3 −1.7 −4.6 2′ 5.4

2′′ 8.52

Table 4. Irreducible representations and magnetic modes for q1 = (qx , 0, 0) in Cmcm.

Irrep (1|0) (2x |0) (my |001/2) (mz|001/2) x y z

�1 1 1 1 1 0 0 Az

�2 1 1 −1 −1 Fx Ay 0
�3 1 −1 1 −1 Ax Fy 0
�4 1 −1 −1 1 0 0 Fz

Atom
1 1 2 2[001] 1[001/2] <= Permutation of atoms
2 2 1 1 2[001] and ‘returning’ translations

mν(Rn) =
∑

{ j}
Sν(q j ) exp(−2π iq j · Rn) =

∑

j

SR
ν (q j ) cos{2πq j ·Rn + ϕ jν}. (1)

The first sum is extended for all pairs (q j ,−q j) of propagation vectors; in the second one
we have assumed that the Fourier coefficients have the form Sν(q j ) = 1/2SR

ν (q j)e−iϕ jν so
that only cosine terms appear after grouping the pairs (q j ,−q j ). Only two sets of magnetic
satellites (H±q j ) of the wavevectors q1 and q2 are observed as (1/2, 0, 0) is an anti-translation.
The phases ϕν(q j ) = ϕ jν between atoms of the same orbit are deduced by symmetry analysis
from the basis functions of the representation. These are usually products of the wavevectors
by the translation part of the symmetry operators of Gq and/or returning translations. In
commensurate phases these are fixed. If there is more than one orbit an additional phase
between the orbits has to be refined. In the LT range the phases for q1 are zero, while for
q2 Tb2 has a phase of 2/3 × 2π = 4/3π . A commensurate amplitude-modulated structure can

12
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Table 5. Irreducible representations and magnetic modes for q2 = (q2x , 0, q2z) in Cmcm .

Irrep (1|0) (my |001/2) x y z

Γ1 1 ωa Ax Fy Az

Γ2 1 −ω Fx Ay Fz

Atom
1 1 2[001] <= Permutation of atoms
2 2 1 and ‘returning’ translations

ω = exp(−π iqz)

be transformed, in some circumstances, to a constant-moment phase by adding an appropriate
global phase to the origin. In our case, i.e. for q1, the atoms 3 and 4 translated by [1/2, 1/2, 0]
have a phase of 2π/4 and therefore zero ordered moment (Sν(q j ) cos π/2), while the amplitude
of the moments of Tb1 and Tb2 are 3.92 μB. An origin shift by inserting a global phase of

G = π/4 results in equal moment values:

S3(q1) cos(2π/4 + π/4) = −S1(q1)
√

2/2 = 2.77 μB

and a sign change of (+ + − − + + − − . . .) for atoms translated along the (110) diagonal.
For the q2 structure the global phase of 
G = −π/3 leads to a commensurate structure with
two amplitudes 5.4 μB for Tb1 and 2 × 5.4 μB for Tb2. The amplitudes of the Fourier
coefficients of the q1 magnetic phase are strongly reduced below the free-ion value. Also
the two unequal moment values, one being larger than the free-ion value of the q2 structure,
are not convincing. In principle the q1, q2 Fourier coefficients describe two independent
magnetic systems coexisting in the form of domains. Alternatively one may assume that the
two wavevectors act on the same physical space. In this case the real structure has to be derived
by equation (1) by adding up all observed Fourier coefficients, as explained in the next section.

5.2. The lock-in multiple q-vector commensurate structure

In general the Fourier coefficients Sν(q j ) [9] are complex vectors with six components and
the phase between them cannot be found by diffraction as there is no information about the
relative phases between reflections of independent wavevectors. This is a general problem of
diffraction of multiple q-vector structures. By a proper choice of the global phase(s) 
G one
may obtain equal moment values in special cases or at least minimize the fluctuations of the
resulting moment values. A shift of the origin of the wave in IC phases does not affect the
magnetic refinements. If the magnetic transition succeeds over more than one branch of the
same wavevector star there exist several theoretical methods to deduce the ordered magnetic
moment value in the commensurate range [10–12]. In our case with two symmetry-independent
vectors the problem may be solved using the program ‘Moment’ [13], which makes a phase
optimization for minimizing the fluctuation of the moment values.

Figure 8 compares the 8 K magnetic structures obtained from refinements using the
incommensurate (IC , top part) and the commensurate (C , lower part) formalism. The IC
model spans 2a, 3c cells. In the C model only the magnetic atoms are shown.

The moments of the 24 atoms in the 2a, 3c enlarged magnetic unit cell are indicated
by m0,m1,m2 for the atoms rν, rν + c, rν + 2c, by −m0,−m1,−m2 for those at
rν + a, rν + a + c, rν + a + 2c for ν = 1 and by ±m′

j for ν = 2. Atoms 3 and 4, related by
the tC = [1/2, 1/2, 0] translation to 1 and 2, have a phase of q j ·tC. The moment arrangement
along the chains rn2 and rn3 corresponds to a shift by 2/3c to that of chains rn1 and rn4.

In the LT range the vectors Sν(q j ) are all along c; therefore the moments are also along
the unit vector along c, denoted hereafter as ẑ. Then the moments of the νth atom in the nth

13
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cell mv(Rn) can be found by rewriting formula (1) for the vectors Sνq j and the total phase
given in table 3:

mv(Rn) = Sν(q1) cos(2πq1 ·Rn + 	Tν
) + Sν(q2) cos(2πq2 ·Rn + 	Tν

). (2)

For Tb1 (ν = 1) this gives the distribution

m0 = S1(q1) cos(π/4) + S1(q2) cos(−π/3)

= S1(q1)
√

2/2 + S1(q2)/2 = 8.17 μBẑ (3a)

m1 = S1(q1) cos(π/4) + S1(q2) cos(2π/3 − π/3)

= S1(q1)
√

2/2 + S1(q2)/2 = 8.17 μBẑ (3b)

m2 = S1(q1) cos(π/4) + S1(q2) cos(4π/3 − π/3)

= S1(q1)
√

2/2 − S1(q2) = −8.03 μB ẑ. (3c)

For Tb2(ν = 2)

m′
0 = S2(q1) cos(π/4) + S2(q2) cos(π)

= S2(q1)
√

2/2 − S2(q2) = −8.03 μB ẑ (3d)

m′
1
= S2(q1) cos(π/4) + S2(q2) cos(5π/3)

= S2(q1)
√

2/2 + S2(q2)/2 = 8.17 μBẑ (3e)

m′
2
= S2(q1) cos(π/4) + S2(q2) cos(7π/3)

= S2(q1)
√

2/2 + S2(q2)/2 = 8.17 μBẑ. (3 f )

The resulting magnetic moment values 8.17(5) μB and 8.03(5) μB for Tb1 and Tb2
respectively (last column of table 3) are within error identical to those of the C approximation
8.30(5) μB and 8.15(7) μB (table 2) for the atoms Tb1 at 8 f and Tb2 at 4c sites respectively.
The reliability factors of the two refinements are comparable.

5.3. The squaring up of the lock-in structure

Figure 5(b) shows that the magnetic moments of the two Tb sites display a different thermal
variation. In the 8–16 K range the magnetic moments remain unchanged. Above 16 K one
observes a strong decrease of the Tb1 (m1) moment values that change by 25% in the range
16–24 K, while Tb2 (m2) changes more smoothly and decreases by only 5% in the same range.
This strange behaviour may be better described in terms of Fourier coefficients. In the C range
the magnetic ordering is described by one harmonic of each wavevector; however, the ratio of
the Fourier coefficients |S(q1)|/|S(q2)| is temperature dependent. Figures 5(b) and (c) show
that the C range has two distinct ranges depending on the |S(q1)|/|S(q2)| ratio. In the LT
range (8–16 K) where the |S(q1)|/|S(q2)| is fixed. In this range equations (3a)–(3c) result in
the expressions

S1(q1) = √
2
m0 + m1 + m2

3
, S1(q2) = 2

2m0 − m1 − m2

3
. (4)

Along the chain ν = 1 the moment arrangement (+ + −) obtained by our refinements

leads to the S1(q1) =
√

2m0
3 =

√
2m
3 ,S1(q2) = 4m0

3 = 4m
3 values and to the |S(q1)|/|S(q2)| =

0.25
√

2 = 0.353 ratio, in good agreement with figure 5(c). The magnetic structure of the LT
range corresponds, within error, to an antiphase domain structure with one amplitude or to a
constant-moment structure. In the intermediate I T range 24–16 K the ratio |S(q1)|/|S(q2)|
increases from 0.1909 at 23 K to 0.353 at 16 K. In this range the antiphase domain arrangement
remains uniaxial but it is described by two amplitudes:

14
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m0 = m1 = (
√

2S(q1) + S(q2))/2, m2 = (
√

2S(q1)−2S(q2))/2 (5a)
|m0|
|m2| = (

√
2|S(q1)|/|S(q2)| + 1)/(

√
2|S(q1)|/|S(q2)| − 2). (5b)

The continuous increase of the ratio |S(q1)|/|S(q2)| with temperature in the I T range
corresponds to the squaring up of the modulated structure. In this range the |m0|/|m2| ratio
increases from 0.87 at 23 K to 1 at 16 K, where it reaches saturation.

5.4. The C(I T ) → IC(H T ) phase transition

Our experiments show that in the IC range TN > T > 24 K both wavevectors become
incommensurate with the crystal lattice and q1x �= q2x . The wavevectors are not symmetry
related and therefore the structure undergoes a further symmetry lowering to monoclinic. The
moment values cannot be compared as their amplitudes vary with their position between 2 and
8 μB, and their orientation also changes. The values above 24 K given in figure 5(b) are derived
by optimizing the phases between the Fourier coefficients found from the IC approximation
to minimize the moment fluctuation by the program moment. These values correspond to the
maximum local moment value. The C(I T ) → IC(H T ) transition corresponds to a spin
reorientation as the S(q2) Fourier vectors move away from the c-axis in the plane (0, y, z)
while the q1 Fourier components remain along c.

5.5. The canted fluctuating IC phase

The best model obtained for the q2 phase in the IC range corresponds to ferromagnetic
Fy, Fz(+ + ++) arrangements within the cell. The appearance of an Fy mode indicates a
further symmetry lowering as the q2 ordering is now described by the combination of two
representations Γ1+Γ2 (see table 5). The q1 ordering is described by a single representation Γ4.
The structure itself depends strongly on the phase choice between the Fourier coefficients. The
resulting IC structure at any temperature obtained by combining the two Fourier coefficients
Sν(q1) and Sν(q2) corresponds to a canted periodic arrangement where both the moment
amplitude and orientation vary with the position. This is better visible in the plane (0 y z) as
the moment direction is slightly fluctuating around the [0, 0, 1] direction. The refined structure
at 25 K is shown in figure 9 for a few cells and for a larger range in figure 10. Further details
of this ordering become visible in the plane (x, 0, z) containing the q1 and q2 wavevectors
for a single atom (figure 11). The moment arrangement of the Tb1 atom along a (39a × 13c
cells) corresponds to an almost transversal modulation in which adjacent Tb atoms have their
moments in opposite directions; see figure 11. Along c if one neglects the small μy component
the arrangement corresponds to (0+− . . . 0+−) μz .

6. Concluding remarks

The TbGe3 lock-in magnetic structure is found to have a uniaxial magnetic moment
arrangement in the entire C range 8 K to Tic. Its symmetry is described by the Pbmma(Sh299

51 )

Shubnikov space group. We have shown that with a suitable choice of the relative phases
between Fourier coefficients the model derived by symmetry analysis with the wavevectors q1

and q2 is equivalent to the commensurate model. The C ordering subdivides in two further
regions, not visible in the magnetic measurements, depending on the thermal variation of
the ratio |S(q1)|/|S(q2)| (Fourier coefficients). In the LT range 8–16 K, |S(q1)|/|S(q2)|
is fixed to 0.353 and the structure is a constant-moment one. In the I T range 24–16 K,
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Figure 9. The canted IC magnetic structure of TbGe3 at 25 K for a few cells along the c-direction.
The moment value varies between 2–8 μB depending on the position.

Figure 10. 3D view
of the canted IC
fluctuating magnetic
structure of TbGe3 at
25 K for 28×a, 5×c
cells: c-axis vertical,
b-axis horizontal.

the modulated commensurate structure squares up progressively and the ratio |S(q1)|/|S(q2)|
varies continuously from 0.183 at 24 K to 0.353 at 16 K.

The (+−) arrangement along a and the antiphase domain arrangement along
c(+ − − + −−) found in the commensurate TbGe3 phase can be explained by
antiferromagnetic interactions between (i) the nearest neighbours along the a direction
(4.01 Å), (ii) next-nearest neighbours along the diagonal (110)(+ + − − + + . . .), and (iii)
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Figure 11. The magnetic moment variation of the
Tb1 atom in the (0 1 0) plane containing both
wavevectors for 39a × 13c cells. The c-axis is
horizontal.

ferromagnetic interactions (+ − − + −−) between third-nearest neighbours along the c-axis
(3 × 3.915 Å).

It is interesting to note that the LT two-dimensional (2D) uniaxial TbGe3 magnetic
moment arrangements within the (x, 0, z) planes is identical to that obtained for the DyGe3
compound [14]. Both structures have the same easy axis which is the shortest axis c and are
described by the wavevectors q1 = (1/2, 0, 0) and q2 = (1/2, 0, 1/3) but referring to different
basis, P (monoclinic) for DyGe3 and C (orthorhombic) for TbGe3. The canted ordering of the
isomorphic ErGe3 compound is described by a single wavevector q = 0 [15] and the easy axis
is along a. These differences concerning the moment orientation may be explained by assuming
that the magnetocrystalline anisotropy in these compounds is crystal-field induced and that the
sign of the lowest-order anisotropy constant is determined by the sign of the second-order
Stevens factor a j , which for Er is different from that of Dy and Tb.

The difference between TbGe3 and DyGe3 consists in the stacking of the 2D (x 0 z)
magnetic layers perpendicular to the y axis through the non primitive translation TC =
[1/2 1/2 0] which is ferromagnetic (+ + + + . . .) for DyGe3 along the (110) diagonal and
(+ + − − . . .) for TbGe3 corresponding to monoclinic and orthorhombic magnetic lattices
respectively; see figure 12. The uniaxial moment arrangements observed in both compounds
indicate the existence of a strong crystal-field anisotropy that defines the moment orientation.
The progressive squaring up of the modulated two-amplitude structure, described by two
wavevectors, indicates the existence of competing interactions that are most likely related to
the particular Tb geometric arrangement. This geometry consists of blocks of condensed nearly
trigonal prisms, with their axis along a and centred by one Ge atom (Ge1), that are separated by
Ge double layers (Ge2, Ge3) as shown in figures 8 and 9. Band structure calculations (extended
Hückel approach) of the isomorphic DyGe3 [16] which analyse the bonding properties of the
Ge1 kinked chains and that of the Ge2 and Ge3 double layers suggest that the layered character
of this structure perpendicular to the y axis is associated with a two-dimensional metallic
conductivity.

As pointed out by Kimura [17, 18] for the orthorhombic compound TbCu2 showing
specific heat anomalies and lock-in transition with q = 1/3a∗, the stabilization of the uniaxial
lock-in magnetic structure can be described in simple terms as a compromise between the
crystal-field anisotropy and competing exchange interactions that lead to similar complex
ordering mechanisms.

More complex is the H T ordering of TbGe3 above TIC associated with (i) an
incommensurate magnetic phase and the concomitant loss of symmetry and (ii) a spin
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Figure 12. The magnetic lattices of the (a) DyGe3
(monoclinic) and (b) TbGe3 (orthorhombic) com-
mensurate structures viewed along [0, 0, 1]. Filled
and open symbols correspond to anti-translation and
translation operations respectively.

reorientation transition from a uniaxial modulated magnetic structure with two amplitudes to
a canted complex structure. Incommensurate rare earth phases are widely observed at high
temperatures due to competition between the RKKY long-range exchange interaction mediated
via the conduction electrons and the crystal-field anisotropy. The general rule is that they lock
in at low temperatures to commensurate structures because of the entropy term in the free
energy [9]. The occurrence of canted arrangements as found in TbGe3 may have their origin on
various types of mechanisms as the appearance of higher-order terms in the crystalline field or
of anisotropic exchange interactions of the Dzyaloshinskii–Moriya type [19, 20]. Kimura [21]
found by theoretical calculations based on a 24-sublattice model for the HoCu2 orthorhombic
compound that the origin of the spin canting observed at H T was the biquadratic exchange
interaction between nearest-neighbouring Ho ions on the adjacent ac planes.

6.1. Symmetry

An important result of our analysis is the independence of the q1x and q2x wavevector
components in the H T range. Such a structure may also be described by superspace groups or
magnetic superspace groups. The structure may have a five-dimensional or six-dimensional
superspace group depending on the number of wavevector arms of q2 participating in the
magnetic ordering. The wavevector q2 has four arms (±q2x, 0,±q2z), and it could give rise
to three independent sets of magnetic satellites if all four arms occur simultaneously, and the
rank would be six. If, however, there are domains with ±q2 or ±q3, with q3 = (−q2x, 0, q2z)

the rank is five, with a monoclinic superspace group. However, this distinction exceeds the
limits of powder diffraction. If q1x = q2x the superspace group is five-dimensional but with
orthorhombic symmetry, Cmmm(m1m).
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Appendix. Symmetry analysis

The magnetic ordering of TbGe3 is characterized by the presence of two propagation vectors:

q1 = (q1x, 0, 0), q2 = (q2x, 0, q2y) with q1x ≈ q2x ≈ 1/2 and q2z ≈ 1/3.

The components are given with respect to the reciprocal frame obtained from the conventional
basis of the space group Cmcm. The magnetic atoms (Tb ions) occupy the positions 4c of site
symmetry m2m:

Tb: 4c m2m: Tb1: (0, y, 1/4) Tb2: (0,−y,−1/4).

For the symmetry analysis it is only necessary to take into account the content of a primitive
cell. The two atoms above constitute this content. The atoms 3 and 4 of the conventional
unit cell are obtained from (1) and (2) by adding the centring translation tC = [1/2, 1/2, 0].
The propagation vectors q1 and q2 belong to the interior of the Brillouin zone, thus the
small representations are obtained easily from the representations of the point groups of the
propagation vectors. Symmetry analysis has to be done for each of the wavevectors, as these
are symmetry independent, and for all arms of the star(s) separately.

A.1. Propagation vector q1

The point group of q1 is G0
1 = 2mm = {1, 2x, m y, mz}, which has four one-dimensional

representations. The star of q1 has two arms: (q1,−q1). The representations of the space
group of q1, G1 = C2cm, are obtained from those of G0

1 by the expression

Dγ (h|th) = e−2π iq·th D0γ (h). (A.1)

The co-set representatives of G1 with respect to the translation group are
(1|0), (2x |0), (m y|001/2), (mz|001/2). Due to the particular form of the translations the
products q1th are zero and the matrices Dγ are identical to D0γ . In table 4 we give the
representations and the basis functions corresponding to the Tb site 4c and the propagation
vector q1.The basis functions F(++) and A(+−) correspond to the signs of the Fourier
components Sqν of the (ν = 1, 2) atoms Tb1 and Tb2. Then, for instance, the Fourier
components corresponding to the representation �1 are of the form

Sq11 = (0, 0, a) and Sq12 = (0, 0,−a).

The same basis functions correspond to the other arm of the star. Thus the magnetic
structure corresponds to a modulated structure with the two atoms 1 and 2 in antiphase within
the reference cell.

A.2. Propagation vector q2

The point group of q2 is G0
2 = 1m1 = {1, m y}, which has two one-dimensional representations.

The star of q2 has four arms:

q1
2 = (q2x, 0, q2z); q2

2 = (−q2x, 0,−q2z);
q3

2 = (−q2x, 0, q2z); q4
2 = (q2x, 0,−q2z).

The representations of the space group of q2, G2 = C1c1, are obtained from those of G0
2

by the same expression as above.
The co-set representatives of G2 are 1̃ = (1|000), c̃y = (m y|001/2). Due to the particular

form of the translations the products q2th are non-zero and the matrices Dγ are not identical to
D0γ . Table 5 gives the representations and the basis functions corresponding to the site 4c and
the propagation vector q2.
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Here the symbols F and A have a different meaning than for q1. Let us apply the projection
operator formula (A.1) for searching the basis functions of the representation �1.

PS1x = (1 · 1̃ + ω · c̃y)S1x = S1x + ω · c̃y S1x = S1x + ω(−S2x e−2π iqz )

= S1x − S2x e−3π iqz = S1x − bS2x = Ax ( with b = e−3π iqz ) (A.2)

PS1y = (1 · 1̃ + ω · c̃y)S1y = S1y + ω · c̃y S1y = S1y + ω(S2y e−2π iqz )

= S1y + S2ye−3π iqz = S1y + bS2y = Fy (A.3)

PS1z = (1 · 1̃ + ω · c̃y)S1z = S1z + ω · c̃y S1z = S1z + ω(−S2ze−2π iqz )

= S1z − S2ze
−3π iqz = S1z − bS2z = Az. (A.4)

The same procedure allows obtaining the basis functions of the representation �2. Then, for
instance, the Fourier components corresponding to the representation �1 are

S1(q2) = (u, v,w); S2(q2) = (−u, v,−w)e−3π iqz .

If qz = 1/3 then the phase factor is e−3π iqz = −1 and we have for the representation �1:

S1(q2) = (u, v,w); S2(q2) = (u,−v,w).

These real Fourier coefficients, together with the arm q2
2 , define a sinusoidal modulated

magnetic structure.

References

[1] Schobinger-Papamantellos P, Rodriguez-Carvajal J, Janssen T and Buschow K H J Conf. Proc. ‘Aperiodic 94’
Les Diablerets

[2] Hahn Th (ed) 2002 International Tables for Crystallography vol A (Dordrecht: Kluwer)
[3] Koptsik V A 1966 Shubnikov Groups (Moscow: Moscow University)
[4] Rodrı́guez-Carvajal J 1993 Physica B 192 55 The programs of the FullProf Suite and their corresponding

documentation can be obtained from the Web at http://www.ill.fr/dif/soft/fp/
[5] Chapon L C and Rodrı́guez-Carvajal J, unpublished
[6] Schobinger-Papamantellos P, de Mooij D B and Buschow K H J 1988 J. Less-Common Met. 144 265

Schobinger-Papamantellos P, de Mooij D B and Buschow K H J 1988 Z. Krist. 185 183
[7] Schobinger-Papamantellos P and Buschow K H J 1989 J. Less-Common Met. 146 279
[8] Venturini G, Ijjaali I and Malaman B 1999 J. Alloys Compounds 288 183
[9] Rossat-Mignod J 1987 Methods of Experimental Physics: Neutron Scattering vol 3 (New York: Academic)

[10] Bertaut E F 1963 Magnetism III ed G T Rado and H Suhl (New York: Academic) chapter 4 , p 149
[11] Izyumov Y A and Naish V E 1979 J. Magn. Magn. Mater. 12 239

Izyumov Y A, Naish V E and Syromiatnikov V N 1979 J. Magn. Magn. Mater. 12 249
Izyumov Y A, Naish V E and Petrov S B 1979 J. Magn. Magn. Mater. 13 267
Izyumov Y A, Naish V E and Petrov S B 1979 J. Magn. Magn. Mater. 13 275
Izyumov Y A 1980 J. Magn. Magn. Mater. 21 33

[12] Brown P J 1986 Magnetic structure Frontiers of Neutron Scattering ed R J Birgeneau, D E Moncton and
A Zeilinger (North-Holland: Elsevier Science) p 31

[13] Rodrı́guez-Carvajal J, Program Moment unpublished
[14] Schobinger-Papamantellos P, Janssen T and Buschow K H J 1996 J. Magn. Magn. Mater. 154 29
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